§6. Исследование пространственно неоднородных установившихся режимов в модели динамики численности популяции с учетом диффузии - Управление риском. Риск. Устойчивое развитие. Синергетика - Неизвестен - Синергетика - Философия на vuzlib.su
Тексты книг принадлежат их авторам и размещены для ознакомления Кол-во книг: 64

Разделы

Философия как наука
Философы и их философия
Сочинения и рассказы
Синергетика
Философия и социология
Философия права
Философия политики

  • Статьи

  • §6. Исследование пространственно неоднородных установившихся режимов в модели динамики численности популяции с учетом диффузии

    Остановимся на двух наиболее распространённых моделях – уравнении Хатчинсона с диффузией

              (36)

    и уравнении

    .        (37)

    При описании замкнутых ареалов наиболее естественными являются краевые условия

    .    (38)

    Здесь N = N(t,x,y), Nt‑h = N(t‑h,x,y),  – оператор Лапласа; (x,y) Î , а  – область на плоскости с достаточно гладкой границей ;  – направление нормали к .

    Для рассматриваемых экологических систем N(t,x,y) > 0, D > 0,  > 0, h > 0. В уравнении (37) нелинейная функция F(N) такова, что F(N) ³ 0 при N ³ 0 и F(N) быстро затухает при N ® ∞, т.е. найдутся такие универсальные постоянные c1 > 0 и c2 > 0, что F(N) ³ c1exp(‑c2N). Например, F(N) берут в виде F(N) = Ne‑N или

    .

    Проведенные асимптотический анализ показал, что при всех достаточно больших значениях  каждая из краевых задач (36)-(38) и (37)-(38) имеет медленно осциллирующее положительное периодическое решение N0(t,). Оно устойчиво и однородно по пространству (т.е. не зависит от x, y). Методика позволяет получить асимптотику N0(t,). Здесь на этом не останавливаемся. Отметим только, что период и максимум этого решения неограниченно возрастает при  ® ∞.

    С краевыми задачами (36)-(38) и (37)-(38) тесно связаны системы уравнений, которые получаются из этих задач путем замены фигурирующего в них оператора Лапласа  его конечно-разностной аппроксимацией. Это приводит к уравнениям

    ,      (39)

    .     (40)

    Систему (39) тоже будем называть уравнением Хатчинсона с диффузией. Диапазоны изменения индексов i и j, а также соотношения для Nij с "наименьшими" и "наибольшими" номерами определяются геометрией области  и граничными условиями (38). Функция Nij(t) имеет смысл "численности" ("концентрации") популяции в точке области  с координатами (xi,yj). Для систем (39) и (40) тоже верен результат о существовании устойчивого однородного (все координаты Nij одинаковы при каждом t) положительного (все координаты положительны) периодического решения.

    Большой интерес представляет исследование пространственно неоднородных установившихся режимов, которые могут возникать в системах (39) и (40) (и краевых задачах (36)-(38) и (37)-(38)). Коэффициент "диффузии" d зависит, очевидно, от размеров области . Чем "больше" , тем меньше этот коэффициент. Наиболее важны задачи с "достаточно малым" коэффициентом d. В этом случае существует множество установившихся режимов типа "бегущих" волн. Удается выявить и довольно просто описать более интересные установившиеся режимы – различные ведущие центры и спиральные волны. В качестве иллюстрации приведенных результатов рассмотрим задачу о динамике изменения численности изолированной популяции рыб, обитающей в однородной среде – озере. Поскольку мальтузианский коэффициент  у рыб достаточно велик, то колебания носят ярко выраженный "хатчинсоновский" характер. Это, в частности, означает, что наибольшее значение (в нормированных единицах) имеет порядок exp(), а минимум численности – порядок e‑exp(). Ясно, что падение численности до таких величин является недопустимым для устойчивого существования биоценоза.

    Этим объясняется то, что практически не встречается одновидовых биоценозов рыб, обитающих в однородной среде. Исключение представляют лишь популяции окуня, щуки и карася. Дело в том, что популяции окуня и щуки имитируют многовидовой биоценоз за счет наличия у них каннибализма, когда старшие особи поедают младших. Для карася характерно так называемое порционное икрометание, которое, в терминах коэффициентов уравнения Хатчинсона, понижает "мальтузианский" коэффициент линейного роста, а значит резко увеличивает минимум численности.

    Рассмотрим одновидовой биоценоз, размещенный в двух озерах. Эта ситуация ничем не отличается от случая одного озера, и динамика численностей в каждом из водоемов описывается уравнением Хатчинсона.

    Допустим теперь, что озера соединены узкой протокой. Тогда в математической модели этого биоценоза между двумя уравнениями Хатчинсона возникает связь диффузионного типа – система вида (39), где узость протоки характеризует малость коэффициента диффузии.

    Согласно приведенным выше результатам, при определенной "узости" протоки динамика рассматриваемой системы может существенно отличаться от динамики в отсутствии протоки.

    Во-первых, наименьшее значение численностей в каждом из озер резко увеличивается (до порядка exp(‑) в отличие от e‑exp() в отсутствие протоки). Отсюда следует важный вывод о возможности выживания одного биоценоза.

    Во-вторых, резко убывает период колебаний (до величин порядка 1 в отличие от exp()).

    В-третьих, сильно увеличиваются средние численности в каждом из озер (exp() против 1). Последнее, по-видимому, можно использовать при разведении промысловых рыб.

    Этот случай является еще одним примером, когда малое воздействие на сложное систему (в данном случае малое изменение среды обитания) может приводить к серьезным изменениям. Повышая устойчивость биоценозов, предотвращая деградацию окружающей среды, следует иметь ввиду и эту возможность.





     
    polkaknig@narod.ru ICQ 474-849-132 © 2005-2009 Материалы этого сайта могут быть использованы только со ссылкой на данный сайт.