§2. Задача прогноза временных рядов - Управление риском. Риск. Устойчивое развитие. Синергетика - Неизвестен - Синергетика - Философия на vuzlib.su
Тексты книг принадлежат их авторам и размещены для ознакомления Кол-во книг: 64

Разделы

Философия как наука
Философы и их философия
Сочинения и рассказы
Синергетика
Философия и социология
Философия права
Философия политики

  • Статьи

  • §2. Задача прогноза временных рядов

    Рассмотрим общую проблему прогноза временных рядов. Пусть x1,x2,…xk – значения некоторой величины, измеряемой в моменты tk = kt. Необходимо предсказать будущие значения xN+1,xN+2,… В настоящее время существует несколько подходов к сформулированной проблеме.

    В статистических подходах постулируется, что плотность распределения xi зависит от m предшествующих членов, и потому для предсказаний можно использовать условное среднее E(xi |xi‑1,xi‑2,…xi‑m). Нелинейная динамика позволила объяснить возникновение указанной зависимости и дать оценку величины m.

    Основное предположение, которое делается в подходе нелинейной динамики, состоит в том, что измеренные величины являются функциями состояния некоторой динамической системы, которая "ответственна" за наблюдаемые эффекты. Т.е. предполагается, что существует динамическая система

                (1)

    (такая форма позволяет с единых позиций рассматривать как отображения xn+1 = F(xn), так и системы обыкновенных дифференциальных уравнений вида  = F(x)).

    Второе предположение состоит в том, что измеряемая величина является функцией состояния этой системы, т.е. xi = h(x(ti)). Тогда теорема Такенса утверждает, что почти для всех , h, f (т.е. в ситуации общего положения) и m ³ 2n+1 должно существовать функциональное соотношение между xi‑1,xi‑2,…xi‑m и xi.

    Основную идею теоремы можно пояснить следующим образом. Все m последовательных значений наблюдаемой можно связать с одним и тем же состоянием системы:

    .

    Если рассматривать последовательность xi‑1,xi‑2,…xi‑m как точку в m‑мерном евклидовом пространстве

    , (2)

    то существует вектор-функция L, такая что zi = (xi). Эта функция отображает фазовое пространство M исходной динамической системы (1) (в данном случае M = Rn, но в общем случае может быть и некоторым n‑мерным многообразием) в n‑мерную поверхность MR Î Rm, : M ® MR или MR = (M).

    В соответствии с теоремами дифференциальной геометрии, при m ³ 2n+1 и для почти любой функции L эта поверхность будет представлять собой вложение исходного фазового пространства в Rm, и будет существовать обратное отображение ‑: MR ® M. Тогда можно записать xi‑m = ‑1(zi‑m), откуда следует, что

    .           (3)

    Теорема Такенса позволяет также сделать и некоторые выводы относительно вида функции F. Она должна включать две части: проецирующую и отображающую.

    Теорема утверждает, что F является одной из компонент отображения n-мерной поверхности MR в себя. Действительно, рассмотрим два вектора, zi=(xi,xi+1,…xi+m‑1) и

              (4)

    Оба они принадлежат MR, а функция Y отображает MR ® MR. Фактически, (4) можно рассматривать как другое представление системы (1). Тогда F должна быть функцией n, а не m аргументов. Наилучшим выбором для них были бы локальные координаты на MR, но обычно они неизвестны. Поэтом оптимальным выбором является проекция на касательную гиперплоскость к MR в окрестности zi или на некоторую другую плоскость, не ортогональную ей. Как правило, такая проекция (а с ней и искомая система координат) существует лишь локально, а потому в ряде случаев необходимо явно указывать, к какой точке z она относится. Следовательно, общий вид предсказывающей функции или предиктора должен быть следующим:

    ,

    где Pn обозначает проектор на n локальных координат.

    Существует и еще одна причина, по которой необходимо вводить оператор проецирования. В присутствии шума точки zi не будут лежать точно на поверхности MR, а будут отклонятся от нее. Но, согласно приведенной теореме, отображение F определено только на MR. Поэтому, чтобы сделать задачу прогноза временных рядов корректной, вместо точки z Î Rm необходимо брать ее разумную проекцию на MR: oz Î MR. При этом конкретный вид оператора p не очень важен.

    Следовательно, с точки зрения нелинейной динамики, проблема прогноза заключается в том, чтобы аппроксимировать неизвестную функциональную зависимость по известным парам {z,F(z)}. В литературе описан ряд методов, которыми решалась эта задача 

    1)       локальные линейные и нелинейные аппроксимации, т.е.

    ,

    где Ak обозначает полином степени k от своих аргументов;

    2)       глобальные полиномиальные аппроксимации

    ;

    Важно отметить, что теорема Такенса не гарантирует существование таких аппроксимаций, однако иногда они оказываются эффективны и полезны метод радиальных базисных функций,

    .

    Формально предыдущее замечание справедливо и в этом случае, но если радиальная базовая функция j(r) убывает достаточно быстро, то область, где F(z) претерпевает существенные изменения, локализована вблизи поверхности MR. Возможно, в некотором смысле это эквивалентно проецированию на поверхность;

    3)       многослойные нейронные сети.

    Сравнение различных методов на ряде модельных примеров дается в работах .Согласно приводимым в литературе результатам, для простых модельных систем (аттракторы Лоренца, Хенона и прочие маломодовые модели) все методы прогноза работают очень хорошо, ошибка прогноза и среднее время предсказуемости находятся в хорошем согласии с теоретическими оценками. Но для реальных данных, как показывают эксперименты, практически важными методами оказываются лишь локальные линейные предикторы, радиальные базовые функции и нейронные сети (на примеры проблем с прогнозированием реальных данных и усилия, направленные на их решения, обращается внимание в работе .





     
    polkaknig@narod.ru ICQ 474-849-132 © 2005-2009 Материалы этого сайта могут быть использованы только со ссылкой на данный сайт.